-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathtrain.py
149 lines (119 loc) · 5.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from prepare_data import KittiDataset, VocDataset, collater, Resizer, AspectRatioBasedSampler, Normalizer
from torch.utils.data import DataLoader
import torch
from torchvision import transforms
import collections
import torch.optim as optim
from retinanet import model
import numpy as np
from tools import SplitKittiDataset
from retinanet import csv_eval
import config as cfg
import os
from augmentation_zoo.MyGridMask import GridMask
from augmentation_zoo.SmallObjectAugmentation import SmallObjectAugmentation
from augmentation_zoo.Myautoaugment_utils import AutoAugmenter
from augmentation_zoo.RandomFlip import RandomFlip
from augmentation_zoo.Mixup_todo import mixup, mix_loss
"""
author: zhenglin.zhou
date: 20200724
"""
# os.environ["CUDA_VISIBLE_DEVICES"] = cfg.CUDA_DEVICES
print('CUDA available: {}'.format(torch.cuda.is_available()))
def _make_transform():
transform_list = list()
if cfg.AUTOAUGMENT:
transform_list.append(AutoAugmenter(cfg.AUTO_POLICY))
if cfg.GRID:
transform_list.append(GridMask(True, True, cfg.GRID_ROTATE,cfg.GRID_OFFSET,cfg.GRID_RATIO,cfg.GRID_MODE,cfg.GRID_PROB))
if cfg.RANDOM_FLIP:
transform_list.append(RandomFlip())
if cfg.SMALL_OBJECT_AUGMENTATION:
transform_list.append(SmallObjectAugmentation(cfg.SOA_THRESH, cfg.SOA_PROB, cfg.SOA_COPY_TIMES, cfg.SOA_EPOCHS, cfg.SOA_ALL_OBJECTS, cfg.SOA_ONE_OBJECT))
transform_list.append(Normalizer())
transform_list.append(Resizer())
return transform_list
def _make_dataset():
transform_list = _make_transform()
if cfg.DATASET_TYPE == 1:
batch_size = cfg.VOC_BATCH_SIZE
dataset_train = VocDataset(cfg.VOC_ROOT_DIR, 'train', transform=transforms.Compose(transform_list))
dataset_val = VocDataset(cfg.VOC_ROOT_DIR, 'val', transform=transforms.Compose([Normalizer(), Resizer()]))
elif cfg.DATASET_TYPE == 2:
root_dir = cfg.KITTI_ROOT_DIR
batch_size = cfg.KITTI_BATCH_SIZE
SplitKittiDataset(root_dir, 0.5) # 分割KITTI数据集,50%训练集,50%测试集
dataset_train = KittiDataset(root_dir, 'train', transform=transforms.Compose(transform_list))
dataset_val = KittiDataset(root_dir, 'val', transform=transforms.Compose([Normalizer(), Resizer()]))
return batch_size, dataset_train, dataset_val
def main():
batch_size, dataset_train, dataset_val = _make_dataset()
sampler = AspectRatioBasedSampler(dataset_train, batch_size=batch_size, drop_last=False)
dataloader_train = DataLoader(dataset_train, num_workers=3, collate_fn=collater, batch_sampler=sampler)
retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True)
if torch.cuda.is_available():
retinanet = retinanet.cuda()
retinanet = torch.nn.DataParallel(retinanet).cuda()
else:
retinanet = torch.nn.DataParallel(retinanet)
retinanet.training = True
optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)
loss_hist =collections.deque(maxlen=500)
retinanet.train()
# retinanet.freeze_bn()
print('Num training images: {}'.format(len(dataset_train)))
BEST_MAP = 0
BEST_MAP_EPOCH = 0
for epoch_num in range(cfg.EPOCHS):
retinanet.train()
# retinanet.freeze_bn()
epoch_loss = []
for iter_num, data in enumerate(dataloader_train):
# try:
optimizer.zero_grad()
if cfg.MIXUP:
data, lam = mixup(data)
if torch.cuda.is_available():
classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot']])
else:
classification_loss, regression_loss = retinanet([data['img'].float(), data['annot']])
if cfg.MIXUP:
classification_loss, regression_loss = mix_loss(classification_loss, regression_loss, lam)
classification_loss = classification_loss.mean()
regression_loss = regression_loss.mean()
loss = classification_loss + regression_loss
if bool(loss == 0):
continue
loss.backward()
torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)
optimizer.step()
loss_hist.append(float(loss))
epoch_loss.append(float(loss))
print(
'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format(
epoch_num, iter_num, float(classification_loss), float(regression_loss), np.mean(loss_hist)))
del classification_loss
del regression_loss
# except Exception as e:
# print(e)
# continue
""" validation part """
print('Evaluating dataset')
average_precisions, mAP = csv_eval.evaluate(dataset_val, retinanet)
if mAP > BEST_MAP:
best_average_precisions = average_precisions
BEST_MAP = mAP
BEST_MAP_EPOCH = epoch_num
scheduler.step(np.mean(epoch_loss))
# torch.save(retinanet.module, '{}_retinanet_{}.pt'.format('voc', epoch_num)))
retinanet.eval()
print('\nBest_mAP:', BEST_MAP_EPOCH)
for label in range(dataset_val.num_classes()):
label_name = dataset_val.label_to_name(label)
print('{}: {}'.format(label_name, best_average_precisions[label][0]))
print('BEST MAP: ', BEST_MAP)
# torch.save(retinanet, 'model_final.pt')
if __name__ == '__main__':
main()