-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathinline.rs
1737 lines (1638 loc) · 76.1 KB
/
inline.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Implementation of "inlining" a component into a flat list of initializers.
//!
//! After the first phase of compiling a component we're left with a single
//! root `Translation` for the original component along with a "static" list of
//! child components. Each `Translation` has a list of `LocalInitializer` items
//! inside of it which is a primitive representation of how the component
//! should be constructed with effectively one initializer per item in the
//! index space of a component. This "local initializer" list would be
//! relatively inefficient to process at runtime and more importantly doesn't
//! convey enough information to understand what trampolines need to be
//! compiled or what fused adapters need to be generated. This consequently is
//! the motivation for this file.
//!
//! The second phase of compilation, inlining here, will in a sense interpret
//! the initializers, at compile time, into a new list of `GlobalInitializer` entries
//! which are a sort of "global initializer". The generated `GlobalInitializer` is
//! much more specific than the `LocalInitializer` and additionally far fewer
//! `GlobalInitializer` structures are generated (in theory) than there are local
//! initializers.
//!
//! The "inlining" portion of the name of this module indicates how the
//! instantiation of a component is interpreted as calling a function. The
//! function's arguments are the imports provided to the instantiation of a
//! component, and further nested function calls happen on a stack when a
//! nested component is instantiated. The inlining then refers to how this
//! stack of instantiations is flattened to one list of `GlobalInitializer`
//! entries to represent the process of instantiating a component graph,
//! similar to how function inlining removes call instructions and creates one
//! giant function for a call graph. Here there are no inlining heuristics or
//! anything like that, we simply inline everything into the root component's
//! list of initializers.
//!
//! Another primary task this module performs is a form of dataflow analysis
//! to represent items in each index space with their definition rather than
//! references of relative indices. These definitions (all the `*Def` types in
//! this module) are not local to any one nested component and instead
//! represent state available at runtime tracked in the final `Component`
//! produced.
//!
//! With all this pieced together the general idea is relatively
//! straightforward. All of a component's initializers are processed in sequence
//! where instantiating a nested component pushes a "frame" onto a stack to
//! start executing and we resume at the old one when we're done. Items are
//! tracked where they come from and at the end after processing only the
//! side-effectful initializers are emitted to the `GlobalInitializer` list in the
//! final `Component`.
use crate::component::translate::*;
use crate::{EntityType, IndexType};
use std::borrow::Cow;
use wasmparser::component_types::{ComponentAnyTypeId, ComponentCoreModuleTypeId};
pub(super) fn run(
types: &mut ComponentTypesBuilder,
result: &Translation<'_>,
nested_modules: &PrimaryMap<StaticModuleIndex, ModuleTranslation<'_>>,
nested_components: &PrimaryMap<StaticComponentIndex, Translation<'_>>,
) -> Result<dfg::ComponentDfg> {
let mut inliner = Inliner {
nested_modules,
nested_components,
result: Default::default(),
import_path_interner: Default::default(),
runtime_instances: PrimaryMap::default(),
};
let index = RuntimeComponentInstanceIndex::from_u32(0);
// The initial arguments to the root component are all host imports. This
// means that they're all using the `ComponentItemDef::Host` variant. Here
// an `ImportIndex` is allocated for each item and then the argument is
// recorded.
//
// Note that this is represents the abstract state of a host import of an
// item since we don't know the precise structure of the host import.
let mut args = HashMap::with_capacity(result.exports.len());
let mut path = Vec::new();
types.resources_mut().set_current_instance(index);
let types_ref = result.types_ref();
for init in result.initializers.iter() {
let (name, ty) = match *init {
LocalInitializer::Import(name, ty) => (name, ty),
_ => continue,
};
// Before `convert_component_entity_type` below all resource types
// introduced by this import need to be registered and have indexes
// assigned to them. Any fresh new resource type referred to by imports
// is a brand new introduction of a resource which needs to have a type
// allocated to it, so new runtime imports are injected for each
// resource along with updating the `imported_resources` map.
let index = inliner.result.import_types.next_key();
types.resources_mut().register_component_entity_type(
&types_ref,
ty,
&mut path,
&mut |path| {
let index = inliner.runtime_import(&ImportPath {
index,
path: path.iter().copied().map(Into::into).collect(),
});
inliner.result.imported_resources.push(index)
},
);
// With resources all taken care of it's now possible to convert this
// into Wasmtime's type system.
let ty = types.convert_component_entity_type(types_ref, ty)?;
// Imports of types that aren't resources are not required to be
// specified by the host since it's just for type information within
// the component.
if let TypeDef::Interface(_) = ty {
continue;
}
let index = inliner.result.import_types.push((name.0.to_string(), ty));
let path = ImportPath::root(index);
args.insert(name.0, ComponentItemDef::from_import(path, ty)?);
}
// This will run the inliner to completion after being seeded with the
// initial frame. When the inliner finishes it will return the exports of
// the root frame which are then used for recording the exports of the
// component.
inliner.result.num_runtime_component_instances += 1;
let frame = InlinerFrame::new(index, result, ComponentClosure::default(), args, None);
let resources_snapshot = types.resources_mut().clone();
let mut frames = vec![(frame, resources_snapshot)];
let exports = inliner.run(types, &mut frames)?;
assert!(frames.is_empty());
let mut export_map = Default::default();
for (name, def) in exports {
inliner.record_export(name, def, types, &mut export_map)?;
}
inliner.result.exports = export_map;
inliner.result.num_resource_tables = types.num_resource_tables();
inliner.result.num_future_tables = types.num_future_tables();
inliner.result.num_stream_tables = types.num_stream_tables();
inliner.result.num_error_context_tables = types.num_error_context_tables();
Ok(inliner.result)
}
struct Inliner<'a> {
/// The list of static modules that were found during initial translation of
/// the component.
///
/// This is used during the instantiation of these modules to ahead-of-time
/// order the arguments precisely according to what the module is defined as
/// needing which avoids the need to do string lookups or permute arguments
/// at runtime.
nested_modules: &'a PrimaryMap<StaticModuleIndex, ModuleTranslation<'a>>,
/// The list of static components that were found during initial translation of
/// the component.
///
/// This is used when instantiating nested components to push a new
/// `InlinerFrame` with the `Translation`s here.
nested_components: &'a PrimaryMap<StaticComponentIndex, Translation<'a>>,
/// The final `Component` that is being constructed and returned from this
/// inliner.
result: dfg::ComponentDfg,
// Maps used to "intern" various runtime items to only save them once at
// runtime instead of multiple times.
import_path_interner: HashMap<ImportPath<'a>, RuntimeImportIndex>,
/// Origin information about where each runtime instance came from
runtime_instances: PrimaryMap<dfg::InstanceId, InstanceModule>,
}
/// A "stack frame" as part of the inlining process, or the progress through
/// instantiating a component.
///
/// All instantiations of a component will create an `InlinerFrame` and are
/// incrementally processed via the `initializers` list here. Note that the
/// inliner frames are stored on the heap to avoid recursion based on user
/// input.
struct InlinerFrame<'a> {
instance: RuntimeComponentInstanceIndex,
/// The remaining initializers to process when instantiating this component.
initializers: std::slice::Iter<'a, LocalInitializer<'a>>,
/// The component being instantiated.
translation: &'a Translation<'a>,
/// The "closure arguments" to this component, or otherwise the maps indexed
/// by `ModuleUpvarIndex` and `ComponentUpvarIndex`. This is created when
/// a component is created and stored as part of a component's state during
/// inlining.
closure: ComponentClosure<'a>,
/// The arguments to the creation of this component.
///
/// At the root level these are all imports from the host and between
/// components this otherwise tracks how all the arguments are defined.
args: HashMap<&'a str, ComponentItemDef<'a>>,
// core wasm index spaces
funcs: PrimaryMap<FuncIndex, dfg::CoreDef>,
memories: PrimaryMap<MemoryIndex, dfg::CoreExport<EntityIndex>>,
tables: PrimaryMap<TableIndex, dfg::CoreExport<EntityIndex>>,
globals: PrimaryMap<GlobalIndex, dfg::CoreExport<EntityIndex>>,
tags: PrimaryMap<GlobalIndex, dfg::CoreExport<EntityIndex>>,
modules: PrimaryMap<ModuleIndex, ModuleDef<'a>>,
// component model index spaces
component_funcs: PrimaryMap<ComponentFuncIndex, ComponentFuncDef<'a>>,
module_instances: PrimaryMap<ModuleInstanceIndex, ModuleInstanceDef<'a>>,
component_instances: PrimaryMap<ComponentInstanceIndex, ComponentInstanceDef<'a>>,
components: PrimaryMap<ComponentIndex, ComponentDef<'a>>,
/// The type of instance produced by completing the instantiation of this
/// frame.
///
/// This is a wasmparser-relative piece of type information which is used to
/// register resource types after instantiation has completed.
///
/// This is `Some` for all subcomponents and `None` for the root component.
instance_ty: Option<ComponentInstanceTypeId>,
}
/// "Closure state" for a component which is resolved from the `ClosedOverVars`
/// state that was calculated during translation.
//
// FIXME: this is cloned quite a lot and given the internal maps if this is a
// perf issue we may want to `Rc` these fields. Note that this is only a perf
// hit at compile-time though which we in general don't pay too much
// attention to.
#[derive(Default, Clone)]
struct ComponentClosure<'a> {
modules: PrimaryMap<ModuleUpvarIndex, ModuleDef<'a>>,
components: PrimaryMap<ComponentUpvarIndex, ComponentDef<'a>>,
}
/// Representation of a "path" into an import.
///
/// Imports from the host at this time are one of three things:
///
/// * Functions
/// * Core wasm modules
/// * "Instances" of these three items
///
/// The "base" values are functions and core wasm modules, but the abstraction
/// of an instance allows embedding functions/modules deeply within other
/// instances. This "path" represents optionally walking through a host instance
/// to get to the final desired item. At runtime instances are just maps of
/// values and so this is used to ensure that we primarily only deal with
/// individual functions and modules instead of synthetic instances.
#[derive(Clone, PartialEq, Hash, Eq)]
struct ImportPath<'a> {
index: ImportIndex,
path: Vec<Cow<'a, str>>,
}
/// Representation of all items which can be defined within a component.
///
/// This is the "value" of an item defined within a component and is used to
/// represent both imports and exports.
#[derive(Clone)]
enum ComponentItemDef<'a> {
Component(ComponentDef<'a>),
Instance(ComponentInstanceDef<'a>),
Func(ComponentFuncDef<'a>),
Module(ModuleDef<'a>),
Type(TypeDef),
}
#[derive(Clone)]
enum ModuleDef<'a> {
/// A core wasm module statically defined within the original component.
///
/// The `StaticModuleIndex` indexes into the `static_modules` map in the
/// `Inliner`.
Static(StaticModuleIndex, ComponentCoreModuleTypeId),
/// A core wasm module that was imported from the host.
Import(ImportPath<'a>, TypeModuleIndex),
}
// Note that unlike all other `*Def` types which are not allowed to have local
// indices this type does indeed have local indices. That is represented with
// the lack of a `Clone` here where once this is created it's never moved across
// components because module instances always stick within one component.
enum ModuleInstanceDef<'a> {
/// A core wasm module instance was created through the instantiation of a
/// module.
///
/// The `RuntimeInstanceIndex` was the index allocated as this was the
/// `n`th instantiation and the `ModuleIndex` points into an
/// `InlinerFrame`'s local index space.
Instantiated(dfg::InstanceId, ModuleIndex),
/// A "synthetic" core wasm module which is just a bag of named indices.
///
/// Note that this can really only be used for passing as an argument to
/// another module's instantiation and is used to rename arguments locally.
Synthetic(&'a HashMap<&'a str, EntityIndex>),
}
#[derive(Clone)]
enum ComponentFuncDef<'a> {
/// A host-imported component function.
Import(ImportPath<'a>),
/// A core wasm function was lifted into a component function.
Lifted {
ty: TypeFuncIndex,
func: dfg::CoreDef,
options: AdapterOptions,
},
}
#[derive(Clone)]
enum ComponentInstanceDef<'a> {
/// A host-imported instance.
///
/// This typically means that it's "just" a map of named values. It's not
/// actually supported to take a `wasmtime::component::Instance` and pass it
/// to another instance at this time.
Import(ImportPath<'a>, TypeComponentInstanceIndex),
/// A concrete map of values.
///
/// This is used for both instantiated components as well as "synthetic"
/// components. This variant can be used for both because both are
/// represented by simply a bag of items within the entire component
/// instantiation process.
//
// FIXME: same as the issue on `ComponentClosure` where this is cloned a lot
// and may need `Rc`.
Items(
IndexMap<&'a str, ComponentItemDef<'a>>,
TypeComponentInstanceIndex,
),
}
#[derive(Clone)]
struct ComponentDef<'a> {
index: StaticComponentIndex,
closure: ComponentClosure<'a>,
}
impl<'a> Inliner<'a> {
/// Symbolically instantiates a component using the type information and
/// `frames` provided.
///
/// The `types` provided is the type information for the entire component
/// translation process. This is a distinct output artifact separate from
/// the component metadata.
///
/// The `frames` argument is storage to handle a "call stack" of components
/// instantiating one another. The youngest frame (last element) of the
/// frames list is a component that's currently having its initializers
/// processed. The second element of each frame is a snapshot of the
/// resource-related information just before the frame was translated. For
/// more information on this snapshotting see the documentation on
/// `ResourcesBuilder`.
fn run(
&mut self,
types: &mut ComponentTypesBuilder,
frames: &mut Vec<(InlinerFrame<'a>, ResourcesBuilder)>,
) -> Result<IndexMap<&'a str, ComponentItemDef<'a>>> {
// This loop represents the execution of the instantiation of a
// component. This is an iterative process which is finished once all
// initializers are processed. Currently this is modeled as an infinite
// loop which drives the top-most iterator of the `frames` stack
// provided as an argument to this function.
loop {
let (frame, _) = frames.last_mut().unwrap();
types.resources_mut().set_current_instance(frame.instance);
match frame.initializers.next() {
// Process the initializer and if it started the instantiation
// of another component then we push that frame on the stack to
// continue onwards.
Some(init) => match self.initializer(frame, types, init)? {
Some(new_frame) => {
frames.push((new_frame, types.resources_mut().clone()));
}
None => {}
},
// If there are no more initializers for this frame then the
// component it represents has finished instantiation. The
// exports of the component are collected and then the entire
// frame is discarded. The exports are then either pushed in the
// parent frame, if any, as a new component instance or they're
// returned from this function for the root set of exports.
None => {
let exports = frame
.translation
.exports
.iter()
.map(|(name, item)| Ok((*name, frame.item(*item, types)?)))
.collect::<Result<_>>()?;
let instance_ty = frame.instance_ty;
let (_, snapshot) = frames.pop().unwrap();
*types.resources_mut() = snapshot;
match frames.last_mut() {
Some((parent, _)) => {
parent.finish_instantiate(exports, instance_ty.unwrap(), types)?;
}
None => break Ok(exports),
}
}
}
}
}
fn initializer(
&mut self,
frame: &mut InlinerFrame<'a>,
types: &mut ComponentTypesBuilder,
initializer: &'a LocalInitializer,
) -> Result<Option<InlinerFrame<'a>>> {
use LocalInitializer::*;
match initializer {
// When a component imports an item the actual definition of the
// item is looked up here (not at runtime) via its name. The
// arguments provided in our `InlinerFrame` describe how each
// argument was defined, so we simply move it from there into the
// correct index space.
//
// Note that for the root component this will add `*::Import` items
// but for sub-components this will do resolution to connect what
// was provided as an import at the instantiation-site to what was
// needed during the component's instantiation.
Import(name, ty) => {
let arg = match frame.args.get(name.0) {
Some(arg) => arg,
// Not all arguments need to be provided for instantiation,
// namely the root component in Wasmtime doesn't require
// structural type imports to be satisfied. These type
// imports are relevant for bindings generators and such but
// as a runtime there's not really a definition to fit in.
//
// If no argument was provided for `name` then it's asserted
// that this is a type import and additionally it's not a
// resource type import (which indeed must be provided). If
// all that passes then this initializer is effectively
// skipped.
None => {
match ty {
ComponentEntityType::Type {
created: ComponentAnyTypeId::Resource(_),
..
} => unreachable!(),
ComponentEntityType::Type { .. } => {}
_ => unreachable!(),
}
return Ok(None);
}
};
// Next resource types need to be handled. For example if a
// resource is imported into this component then it needs to be
// assigned a unique table to provide the isolation guarantees
// of resources (this component's table is shared with no
// others). Here `register_component_entity_type` will find
// imported resources and then `lookup_resource` will find the
// resource within `arg` as necessary to lookup the original
// true definition of this resource.
//
// This is what enables tracking true resource origins
// throughout component translation while simultaneously also
// tracking unique tables for each resource in each component.
let mut path = Vec::new();
let (resources, types) = types.resources_mut_and_types();
resources.register_component_entity_type(
&frame.translation.types_ref(),
*ty,
&mut path,
&mut |path| arg.lookup_resource(path, types),
);
// And now with all the type information out of the way the
// `arg` definition is moved into its corresponding index space.
frame.push_item(arg.clone());
}
// Lowering a component function to a core wasm function is
// generally what "triggers compilation". Here various metadata is
// recorded and then the final component gets an initializer
// recording the lowering.
//
// NB: at this time only lowered imported functions are supported.
Lower {
func,
options,
canonical_abi,
lower_ty,
} => {
let lower_ty =
types.convert_component_func_type(frame.translation.types_ref(), *lower_ty)?;
let options_lower = self.adapter_options(frame, types, options);
let func = match &frame.component_funcs[*func] {
// If this component function was originally a host import
// then this is a lowered host function which needs a
// trampoline to enter WebAssembly. That's recorded here
// with all relevant information.
ComponentFuncDef::Import(path) => {
let import = self.runtime_import(path);
let options = self.canonical_options(options_lower);
let index = self.result.trampolines.push((
*canonical_abi,
dfg::Trampoline::LowerImport {
import,
options,
lower_ty,
},
));
dfg::CoreDef::Trampoline(index)
}
// This case handles when a lifted function is later
// lowered, and both the lowering and the lifting are
// happening within the same component instance.
//
// In this situation if the `canon.lower`'d function is
// called then it immediately sets `may_enter` to `false`.
// When calling the callee, however, that's `canon.lift`
// which immediately traps if `may_enter` is `false`. That
// means that this pairing of functions creates a function
// that always traps.
//
// When closely reading the spec though the precise trap
// that comes out can be somewhat variable. Technically the
// function yielded here is one that should validate the
// arguments by lifting them, and then trap. This means that
// the trap could be different depending on whether all
// arguments are valid for now. This was discussed in
// WebAssembly/component-model#51 somewhat and the
// conclusion was that we can probably get away with "always
// trap" here.
//
// The `CoreDef::AlwaysTrap` variant here is used to
// indicate that this function is valid but if something
// actually calls it then it just generates a trap
// immediately.
ComponentFuncDef::Lifted {
options: options_lift,
..
} if options_lift.instance == options_lower.instance => {
let index = self
.result
.trampolines
.push((*canonical_abi, dfg::Trampoline::AlwaysTrap));
dfg::CoreDef::Trampoline(index)
}
// Lowering a lifted function where the destination
// component is different than the source component means
// that a "fused adapter" was just identified.
//
// Metadata about this fused adapter is recorded in the
// `Adapters` output of this compilation pass. Currently the
// implementation of fused adapters is to generate a core
// wasm module which is instantiated with relevant imports
// and the exports are used as the fused adapters. At this
// time we don't know when precisely the instance will be
// created but we do know that the result of this will be an
// export from a previously-created instance.
//
// To model this the result of this arm is a
// `CoreDef::Export`. The actual indices listed within the
// export are "fake indices" in the sense of they're not
// resolved yet. This resolution will happen at a later
// compilation phase. Any usages of the `CoreDef::Export`
// here will be detected and rewritten to an actual runtime
// instance created.
//
// The `instance` field of the `CoreExport` has a marker
// which indicates that it's a fused adapter. The `item` is
// a function where the function index corresponds to the
// `adapter_idx` which contains the metadata about this
// adapter being created. The metadata is used to learn
// about the dependencies and when the adapter module can
// be instantiated.
ComponentFuncDef::Lifted {
ty: lift_ty,
func,
options: options_lift,
} => {
let adapter_idx = self.result.adapters.push(Adapter {
lift_ty: *lift_ty,
lift_options: options_lift.clone(),
lower_ty,
lower_options: options_lower,
func: func.clone(),
});
dfg::CoreDef::Adapter(adapter_idx)
}
};
frame.funcs.push(func);
}
// Lifting a core wasm function is relatively easy for now in that
// some metadata about the lifting is simply recorded. This'll get
// plumbed through to exports or a fused adapter later on.
Lift(ty, func, options) => {
let ty = types.convert_component_func_type(frame.translation.types_ref(), *ty)?;
let options = self.adapter_options(frame, types, options);
frame.component_funcs.push(ComponentFuncDef::Lifted {
ty,
func: frame.funcs[*func].clone(),
options,
});
}
// A new resource type is being introduced, so it's recorded as a
// brand new resource in the final `resources` array. Additionally
// for now resource introductions are considered side effects to
// know when to register their destructors so that's recorded as
// well.
//
// Note that this has the effect of when a component is instantiated
// twice it will produce unique types for the resources from each
// instantiation. That's the intended runtime semantics and
// implementation here, however.
Resource(ty, rep, dtor) => {
let idx = self.result.resources.push(dfg::Resource {
rep: *rep,
dtor: dtor.map(|i| frame.funcs[i].clone()),
instance: frame.instance,
});
self.result
.side_effects
.push(dfg::SideEffect::Resource(idx));
// Register with type translation that all future references to
// `ty` will refer to `idx`.
//
// Note that this registration information is lost when this
// component finishes instantiation due to the snapshotting
// behavior in the frame processing loop above. This is also
// intended, though, since `ty` can't be referred to outside of
// this component.
let idx = self.result.resource_index(idx);
types.resources_mut().register_resource(ty.resource(), idx);
}
// Resource-related intrinsics are generally all the same.
// Wasmparser type information is converted to wasmtime type
// information and then new entries for each intrinsic are recorded.
ResourceNew(id, ty) => {
let id = types.resource_id(id.resource());
let index = self
.result
.trampolines
.push((*ty, dfg::Trampoline::ResourceNew(id)));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
ResourceRep(id, ty) => {
let id = types.resource_id(id.resource());
let index = self
.result
.trampolines
.push((*ty, dfg::Trampoline::ResourceRep(id)));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
ResourceDrop(id, ty) => {
let id = types.resource_id(id.resource());
let index = self
.result
.trampolines
.push((*ty, dfg::Trampoline::ResourceDrop(id)));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
BackpressureSet { func } => {
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::BackpressureSet {
instance: frame.instance,
},
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
TaskReturn {
func,
result,
options,
} => {
let results = result
.iter()
.map(|ty| types.valtype(frame.translation.types_ref(), ty))
.collect::<Result<_>>()?;
let results = types.new_tuple_type(results);
let options = self.adapter_options(frame, types, options);
let options = self.canonical_options(options);
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::TaskReturn { results, options }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
WaitableSetNew { func } => {
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::WaitableSetNew {
instance: frame.instance,
},
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
WaitableSetWait {
func,
async_,
memory,
} => {
let (memory, _) = self.memory(frame, types, *memory);
let memory = self.result.memories.push(memory);
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::WaitableSetWait {
instance: frame.instance,
async_: *async_,
memory,
},
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
WaitableSetPoll {
func,
async_,
memory,
} => {
let (memory, _) = self.memory(frame, types, *memory);
let memory = self.result.memories.push(memory);
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::WaitableSetPoll {
instance: frame.instance,
async_: *async_,
memory,
},
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
WaitableSetDrop { func } => {
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::WaitableSetDrop {
instance: frame.instance,
},
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
WaitableJoin { func } => {
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::WaitableJoin {
instance: frame.instance,
},
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
Yield { func, async_ } => {
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::Yield { async_: *async_ }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
SubtaskDrop { func } => {
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::SubtaskDrop {
instance: frame.instance,
},
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
StreamNew { ty, func } => {
let InterfaceType::Stream(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::StreamNew { ty }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
StreamRead { ty, func, options } => {
let InterfaceType::Stream(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let options = self.adapter_options(frame, types, options);
let options = self.canonical_options(options);
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::StreamRead { ty, options }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
StreamWrite { ty, func, options } => {
let InterfaceType::Stream(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let options = self.adapter_options(frame, types, options);
let options = self.canonical_options(options);
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::StreamWrite { ty, options }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
StreamCancelRead { ty, func, async_ } => {
let InterfaceType::Stream(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::StreamCancelRead {
ty,
async_: *async_,
},
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
StreamCancelWrite { ty, func, async_ } => {
let InterfaceType::Stream(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::StreamCancelWrite {
ty,
async_: *async_,
},
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
StreamCloseReadable { ty, func } => {
let InterfaceType::Stream(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::StreamCloseReadable { ty }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
StreamCloseWritable { ty, func } => {
let InterfaceType::Stream(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::StreamCloseWritable { ty }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
FutureNew { ty, func } => {
let InterfaceType::Future(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::FutureNew { ty }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
FutureRead { ty, func, options } => {
let InterfaceType::Future(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let options = self.adapter_options(frame, types, options);
let options = self.canonical_options(options);
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::FutureRead { ty, options }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
FutureWrite { ty, func, options } => {
let InterfaceType::Future(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let options = self.adapter_options(frame, types, options);
let options = self.canonical_options(options);
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::FutureWrite { ty, options }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
FutureCancelRead { ty, func, async_ } => {
let InterfaceType::Future(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::FutureCancelRead {
ty,
async_: *async_,
},
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
FutureCancelWrite { ty, func, async_ } => {
let InterfaceType::Future(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::FutureCancelWrite {
ty,
async_: *async_,
},
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
FutureCloseReadable { ty, func } => {
let InterfaceType::Future(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::FutureCloseReadable { ty }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
FutureCloseWritable { ty, func } => {
let InterfaceType::Future(ty) =
types.defined_type(frame.translation.types_ref(), *ty)?
else {
unreachable!()
};
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::FutureCloseWritable { ty }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
ErrorContextNew { func, options } => {
let ty = types.error_context_table_type()?;
let options = self.adapter_options(frame, types, options);
let options = self.canonical_options(options);
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::ErrorContextNew { ty, options }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
ErrorContextDebugMessage { func, options } => {
let ty = types.error_context_table_type()?;
let options = self.adapter_options(frame, types, options);
let options = self.canonical_options(options);
let index = self.result.trampolines.push((
*func,
dfg::Trampoline::ErrorContextDebugMessage { ty, options },
));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
ErrorContextDrop { func } => {
let ty = types.error_context_table_type()?;
let index = self
.result
.trampolines
.push((*func, dfg::Trampoline::ErrorContextDrop { ty }));
frame.funcs.push(dfg::CoreDef::Trampoline(index));
}
ThreadSpawnIndirect { func, ty, table } => {
let (table, _) = self.table(frame, types, *table);
let table = self.result.tables.push(table);
let ty = types.convert_component_func_type(frame.translation.types_ref(), *ty)?;
let index = self
.result
.trampolines