+ "where $\\mathbf{c} = \\mathbf{L_B}^{-1} \\mathbf{A} \\mathbf{y} \\sigma_y^{-1}$, $\\mathbf{B} = \\mathbf{I} + \\mathbf{A}\\mathbf{A}^T$ and $\\mathbf{A} = \\mathbf{L}^{-1} \\mathbf{K}_{mn} \\sigma_y^{-1}$. Lower-triangular matrices $\\mathbf{L_B}$ and $\\mathbf{L}$ are obtained from a [Cholesky decomposition](https://en.wikipedia.org/wiki/Cholesky_decomposition) of $\\mathbf{B} = \\mathbf{L_B} \\mathbf{L_B}^T$ and $\\mathbf{K}_{mm} = \\mathbf{L} \\mathbf{L}^T$, respectively. $\\mathbf{c}$ and $\\mathbf{A}$ are obtained by solving the equations $\\mathbf{L_B} \\mathbf{c} = \\mathbf{A} \\mathbf{y} \\sigma_y^{-1}$ and $\\mathbf{L} \\mathbf{A} = \\mathbf{K}_{mn} \\sigma_y^{-1}$, respectively. The log determinant of $\\mathbf{B}$ is $2 \\sum_{i=1}^m \\log {L_B}_{ii}$ as explained in [this post](https://math.stackexchange.com/a/3211219/648651), for example. Using these definitions, a numerically stable implementation of a negative lower bound (`nlb`) is straightforward."
0 commit comments