-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
145 lines (113 loc) · 5.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from __future__ import print_function
import argparse
from math import log10
import os
import math
import torch
#import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from model import BBBNet
from utils.BBBlayers import GaussianVariationalInference
from data import get_training_set, get_test_set
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
parser.add_argument('--upscale_factor', type=int, default=3, help="super resolution upscale factor")
parser.add_argument('--batch_size', type=int, default=1024, help='training batch size')
parser.add_argument('--testBatchSize', type=int, default=10, help='testing batch size')
parser.add_argument('--num_epochs', type=int, default=2000, help='number of epochs to train for')
parser.add_argument('--num_samples', default=10, type=int, help='Number of samples')
parser.add_argument('--beta_type', default="Blundell", type=str, help='Beta type')
parser.add_argument('--lr', type=float, default=0.01, help='Learning Rate. Default=0.01')
parser.add_argument('--cuda', action='store_true', help='use cuda?', default=True)
parser.add_argument('--threads', type=int, default=8, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
global opt
opt = parser.parse_args()
print(opt)
if opt.cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
torch.manual_seed(opt.seed)
device = torch.device("cuda" if opt.cuda else "cpu")
print('===> Loading datasets')
train_set = get_training_set(opt.upscale_factor)
test_set = get_test_set(opt.upscale_factor)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batch_size, shuffle=True)
testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False)
print('===> Building model')
model = BBBNet(upscale_factor=opt.upscale_factor).to(device)
vi = GaussianVariationalInference(torch.nn.MSELoss())
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
#load a model from checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
opt.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(opt.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
def train(epoch):
epoch_loss = 0
m = math.ceil(len(train_set) / opt.batch_size)
for iteration, batch in enumerate(training_data_loader, 1):
input, target = batch[0].to(device), batch[1].to(device)
if opt.beta_type is "Blundell":
beta = 2 ** (m - (iteration + 1)) / (2 ** m - 1)
elif opt.beta_type is "Soenderby":
beta = min(epoch / (opt.num_epochs // 4), 1)
elif opt.beta_type is "Standard":
beta = 1 / m
else:
beta = 0
outputs, kl = model.probforward(input)
optimizer.zero_grad()
loss = vi(outputs, target,kl,beta )
epoch_loss += loss.item()
loss.backward()
optimizer.step()
print("===> Epoch[{}]({}/{}): Loss: {:.4f}".format(epoch, iteration, len(training_data_loader), loss.item()))
print("===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, epoch_loss / len(training_data_loader)))
def test():
avg_psnr = 0
model.eval()
m = math.ceil(len(train_set) / opt.batch_size)
with torch.no_grad():
for batch in testing_data_loader:
input, target = batch[0].to(device), batch[1].to(device)
if opt.beta_type is "Blundell":
beta = 2 ** (m - (opt.testBatchSize + 1)) / (2 ** m - 1)
elif opt.beta_type is "Soenderby":
beta = min(epoch / (opt.num_epochs // 4), 1)
elif opt.beta_type is "Standard":
beta = 1 / m
else:
beta = 0
prediction, kl = model.probforward(input)
mse = vi(prediction, target, kl, beta)
psnr = 10 * log10(1 / mse.item())
avg_psnr += psnr
print("===> Avg. PSNR: {:.4f} dB".format(avg_psnr / len(testing_data_loader)))
def checkpoint(epoch):
model_out_path = "model_epoch_{}.pth".format(epoch)
torch.save(model, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
def save_checkpoint(state):
model_out_path = "./checkpoints/"+"model_epoch_{}.pth".format(epoch)
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
for epoch in range(1, opt.num_epochs + 1):
train(epoch)
test()
#checkpoint(epoch)
save_checkpoint({
'epoch': epoch + 1,
'arch': model,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
})