-
Notifications
You must be signed in to change notification settings - Fork 184
/
Copy pathtest_allreduce.py
231 lines (192 loc) · 9.97 KB
/
test_allreduce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import asyncio
import random
import time
from typing import Sequence
import pytest
import torch
from hivemind import Quantile8BitQuantization, aenumerate
from hivemind.averaging.accumulators import MeanAccumulator
from hivemind.averaging.allreduce import AllReduceRunner, AveragingMode
from hivemind.averaging.partition import TensorPartContainer, TensorPartReducer
from hivemind.compression import deserialize_torch_tensor
from hivemind.p2p import P2P, StubBase
from hivemind.proto.runtime_pb2 import CompressionType
@pytest.mark.forked
@pytest.mark.asyncio
async def test_partitioning():
all_tensors = [
torch.randn(30_000, 128),
torch.rand(128),
torch.ones(1, 1, 1, 1, 1, 1, 8),
torch.ones(1, 0),
torch.zeros(0),
torch.zeros([]),
torch.randn(65536),
torch.rand(512, 2048),
torch.randn(1024, 1024).add(-9),
torch.zeros(1020),
torch.randn(4096),
]
# note: this test does _not_ use parameterization to reuse sampled tensors
for num_tensors in 1, 3, 5:
for part_size_bytes in 31337, 2 ** 20, 10 ** 10:
for weights in [(1, 1), (0.333, 0.1667, 0.5003), (1.0, 0.0), [0.0, 0.4, 0.6, 0.0]]:
tensors = random.choices(all_tensors, k=num_tensors)
partition = TensorPartContainer(tensors, weights, part_size_bytes=part_size_bytes)
async def write_tensors():
for peer_index in range(partition.group_size):
async for part_index, part in aenumerate(partition.iterate_input_parts_for(peer_index)):
output_tensor = torch.sin(deserialize_torch_tensor(part))
partition.register_processed_part(peer_index, part_index, output_tensor)
task = asyncio.create_task(write_tensors())
tensor_index = 0
async for output_tensor in partition.iterate_output_tensors():
assert torch.allclose(output_tensor, torch.sin(tensors[tensor_index]))
tensor_index += 1
assert tensor_index == len(tensors)
await task
@pytest.mark.parametrize(
"tensors",
[
[torch.zeros(0)],
[torch.zeros(0), torch.zeros(0), torch.zeros(1)],
[torch.zeros(0), torch.zeros(999), torch.zeros(0), torch.zeros(0)],
],
)
@pytest.mark.parametrize("peer_fractions", [(0.33, 0.44, 0.23), (0.5, 0.5), (0.1, 0.0, 0.9), (1.0,), (0.1,) * 9])
@pytest.mark.forked
@pytest.mark.asyncio
async def test_partitioning_edge_cases(tensors: Sequence[torch.Tensor], peer_fractions: Sequence[float]):
partition = TensorPartContainer(tensors, peer_fractions, part_size_bytes=16)
for peer_index in range(len(peer_fractions)):
async for part_index, part in aenumerate(partition.iterate_input_parts_for(peer_index)):
partition.register_processed_part(peer_index, part_index, deserialize_torch_tensor(part))
tensor_index = 0
async for output_tensor in partition.iterate_output_tensors():
assert torch.allclose(output_tensor, tensors[tensor_index])
tensor_index += 1
@pytest.mark.forked
@pytest.mark.asyncio
async def test_partitioning_asynchronous():
"""ensure that tensor partitioning does not interfere with asynchronous code"""
tensors = [torch.randn(2048, 2048), torch.randn(1024, 4096), torch.randn(4096, 1024), torch.randn(30_000, 1024)]
peer_fractions = [0.4, 0.3, 0.2, 0.1]
partition = TensorPartContainer(tensors, peer_fractions, compression=Quantile8BitQuantization())
read_started, read_finished = asyncio.Event(), asyncio.Event()
async def write_tensors():
for peer_index in range(partition.group_size):
async for part_index, part in aenumerate(partition.iterate_input_parts_for(peer_index)):
partition.register_processed_part(peer_index, part_index, deserialize_torch_tensor(part))
assert read_started.is_set(), "partitioner should have started reading before it finished writing"
async def read_tensors():
async for _ in partition.iterate_output_tensors():
read_started.set()
read_finished.set()
async def wait_synchronously():
time_in_waiting = 0.0
while not read_finished.is_set():
await asyncio.sleep(0.01)
time_in_waiting += 0.01
return time_in_waiting
start_time = time.perf_counter()
*_, time_in_waiting = await asyncio.gather(write_tensors(), read_tensors(), wait_synchronously())
wall_time = time.perf_counter() - start_time
# check that event loop had enough time to respond to incoming requests; this is over 50% most of the time
# we set 33% threshold to ensure that the test will pass reliably. If we break prefetch, this drops to <10%
assert time_in_waiting > wall_time / 3, f"Event loop could only run {time_in_waiting / wall_time :.5f} of the time"
@pytest.mark.parametrize("num_senders", [1, 2, 4, 10])
@pytest.mark.parametrize("num_parts", [0, 1, 100])
@pytest.mark.parametrize("synchronize_prob", [1.0, 0.1, 0.0])
@pytest.mark.forked
@pytest.mark.asyncio
async def test_reducer(num_senders: int, num_parts: int, synchronize_prob: float):
tensor_part_shapes = [torch.Size([i]) for i in range(num_parts)]
reducer = TensorPartReducer(tensor_part_shapes, num_senders, weights=None, accumulator_factory=MeanAccumulator)
local_tensors_by_sender = [[torch.randn(i) for i in range(num_parts)] for j in range(num_senders)]
async def send_tensors(sender_index: int):
local_tensors = local_tensors_by_sender[sender_index]
averaged_parts = []
pending_tasks = []
for part_index in range(num_parts):
pending_tasks.append(
asyncio.create_task(reducer.accumulate_part(sender_index, part_index, local_tensors[part_index]))
)
if random.random() < synchronize_prob or part_index == num_parts - 1:
averaged_parts.extend(await asyncio.gather(*pending_tasks))
pending_tasks = []
return averaged_parts
averaged_tensors_by_peer = await asyncio.gather(*map(send_tensors, range(num_senders)))
reference = [
sum(local_tensors_by_sender[sender_index][part_index] for sender_index in range(num_senders)) / num_senders
for part_index in range(num_parts)
]
for averaged_tensors in averaged_tensors_by_peer:
assert len(averaged_tensors) == len(reference)
for averaging_result, reference_tensor in zip(averaged_tensors, reference):
assert torch.allclose(averaging_result, reference_tensor, rtol=1e-3, atol=1e-5)
NODE, CLIENT, AUX = AveragingMode.NODE, AveragingMode.CLIENT, AveragingMode.AUX
@pytest.mark.parametrize(
"peer_modes, averaging_weights, peer_fractions, part_size_bytes",
[
((NODE, NODE, NODE, NODE), (1, 1, 1, 1), (1, 1, 1, 1), 2 ** 20),
((NODE, NODE, NODE, NODE), (0.1, 0.2, 0.3, 0.4), (1, 1, 1, 1), 2 ** 20),
((NODE, NODE, NODE, NODE), (1, 1, 1, 1), (1, 2, 3, 0), 2 ** 20),
((NODE, NODE, NODE, CLIENT), (1, 1, 1, 1), (1, 2, 3, 0), 2 ** 20),
((NODE, NODE, NODE, AUX), (1, 1, 1, 0), (1, 2, 3, 4), 2 ** 20),
((NODE, NODE, NODE, NODE), (0.15, 0.0, 0.35, 0.45), (1, 1, 1, 1), 2 ** 20),
((NODE, AUX, NODE, CLIENT), (0.15, 0.0, 0.35, 0.45), (150, 200, 67, 0), 2 ** 20),
((NODE, AUX, NODE, CLIENT), (0.15, 0.0, 0.35, 0.45), (150, 200, 67, 0), 256),
((NODE, AUX, NODE, CLIENT), (0.15, 0.0, 0.35, 0.45), (150, 200, 67, 0), 19),
((AUX, AUX, AUX, AUX), (0.0, 0.0, 0.0, 0.0), (1, 2, 3, 4), 2 ** 20),
],
)
@pytest.mark.forked
@pytest.mark.asyncio
async def test_allreduce_protocol(peer_modes, averaging_weights, peer_fractions, part_size_bytes):
"""Run group allreduce protocol manually without grpc, see if the internal logic is working as intended"""
p2ps = [await P2P.create()]
visible_maddrs = await p2ps[0].get_visible_maddrs()
p2ps += await asyncio.gather(*[P2P.create(initial_peers=visible_maddrs) for _ in range(3)])
peers = [instance.peer_id for instance in p2ps]
tensors_by_peer = {
peer: [torch.randn(3, 128), torch.rand(32), torch.tensor(i, dtype=torch.float32)]
for i, peer in enumerate(peers)
}
group_id = random.getrandbits(160).to_bytes(length=20, byteorder="big")
allreduce_protocols = []
for p2p in p2ps:
allreduce_protocol = AllReduceRunner(
p2p=p2p,
servicer_type=AllReduceRunner,
prefix=None,
group_id=group_id,
tensors=[x.clone() for x in tensors_by_peer[p2p.peer_id]],
ordered_peer_ids=peers,
peer_fractions=peer_fractions,
accumulator_factory=MeanAccumulator,
modes=peer_modes,
weights=averaging_weights,
part_size_bytes=part_size_bytes,
)
await allreduce_protocol.add_p2p_handlers(p2p)
allreduce_protocols.append(allreduce_protocol)
async def _run_allreduce_inplace(allreduce: AllReduceRunner):
async for tensor_index, tensor_delta in aenumerate(allreduce):
allreduce.tensor_part_container.local_tensors[tensor_index].add_(tensor_delta)
await asyncio.gather(*map(_run_allreduce_inplace, allreduce_protocols))
reference_tensors = [
sum(tensors_by_peer[peer][i] * averaging_weights[peer_index] for peer_index, peer in enumerate(peers))
/ sum(averaging_weights)
for i in range(len(tensors_by_peer[peers[0]]))
]
for peer_index, protocol in enumerate(allreduce_protocols):
assert protocol._future.done()
if protocol.modes[peer_index] != AveragingMode.AUX:
targets_for_peer = reference_tensors
else:
targets_for_peer = tensors_by_peer[peers[peer_index]]
output_tensors = protocol.tensor_part_container.local_tensors
assert len(output_tensors) == len(targets_for_peer)
assert all(torch.allclose(our, ref, atol=1e-6, rtol=0) for our, ref in zip(output_tensors, targets_for_peer))
for instance in p2ps:
await instance.shutdown()