7
7
8
8
namespace opencv_test { namespace {
9
9
10
- class CV_BackgroundSubtractorTest : public cvtest ::BaseTest
11
- {
12
- public:
13
- CV_BackgroundSubtractorTest ();
14
- protected:
15
- void run (int );
16
- };
17
-
18
- CV_BackgroundSubtractorTest::CV_BackgroundSubtractorTest ()
19
- {
20
- }
21
-
22
10
/* *
23
11
* This test checks the following:
24
12
* (i) BackgroundSubtractorGMG can operate with matrices of various types and sizes
25
13
* (ii) Training mode returns empty fgmask
26
14
* (iii) End of training mode, and anomalous frame yields every pixel detected as FG
27
15
*/
28
- void CV_BackgroundSubtractorTest::run (int )
16
+ typedef testing::TestWithParam<std::tuple<perf::MatDepth,int >> bgsubgmg_allTypes;
17
+ TEST_P (bgsubgmg_allTypes, accuracy)
29
18
{
30
- int code = cvtest::TS::OK;
31
- RNG& rng = ts->get_rng ();
32
- int type = ((unsigned int )rng)%7 ; // !< pick a random type, 0 - 6, defined in types_c.h
33
- int channels = 1 + ((unsigned int )rng)%4 ; // !< random number of channels from 1 to 4.
34
- int channelsAndType = CV_MAKETYPE (type,channels);
35
- int width = 2 + ((unsigned int )rng)%98 ; // !< Mat will be 2 to 100 in width and height
36
- int height = 2 + ((unsigned int )rng)%98 ;
19
+ const int depth = get<0 >(GetParam ());
20
+ const int ncn = get<1 >(GetParam ());
21
+ const int mtype = CV_MAKETYPE (depth, ncn);
22
+ const int width = 64 ;
23
+ const int height = 64 ;
24
+ RNG& rng = TS::ptr ()->get_rng ();
37
25
38
26
Ptr <BackgroundSubtractorGMG> fgbg = createBackgroundSubtractorGMG ();
39
- Mat fgmask;
40
-
41
- if (!fgbg)
42
- CV_Error (Error::StsError," Failed to create Algorithm\n " );
27
+ ASSERT_TRUE (fgbg != nullptr ) << " Failed to call createBackgroundSubtractorGMG()" ;
43
28
44
29
/* *
45
30
* Set a few parameters
@@ -57,49 +42,51 @@ void CV_BackgroundSubtractorTest::run(int)
57
42
* Max value for simulated images picked randomly in upper half of type range
58
43
* Min value for simulated images picked randomly in lower half of type range
59
44
*/
60
- if (type == CV_8U)
45
+ if (depth == CV_8U)
61
46
{
62
47
uchar half = UCHAR_MAX/2 ;
63
48
maxd = (unsigned char )rng.uniform (half+32 , UCHAR_MAX);
64
49
mind = (unsigned char )rng.uniform (0 , half-32 );
65
50
}
66
- else if (type == CV_8S)
51
+ else if (depth == CV_8S)
67
52
{
68
53
maxd = (char )rng.uniform (32 , CHAR_MAX);
69
54
mind = (char )rng.uniform (CHAR_MIN, -32 );
70
55
}
71
- else if (type == CV_16U)
56
+ else if (depth == CV_16U)
72
57
{
73
58
ushort half = USHRT_MAX/2 ;
74
59
maxd = (unsigned int )rng.uniform (half+32 , USHRT_MAX);
75
60
mind = (unsigned int )rng.uniform (0 , half-32 );
76
61
}
77
- else if (type == CV_16S)
62
+ else if (depth == CV_16S)
78
63
{
79
64
maxd = rng.uniform (32 , SHRT_MAX);
80
65
mind = rng.uniform (SHRT_MIN, -32 );
81
66
}
82
- else if (type == CV_32S)
67
+ else if (depth == CV_32S)
83
68
{
84
69
maxd = rng.uniform (32 , INT_MAX);
85
70
mind = rng.uniform (INT_MIN, -32 );
86
71
}
87
- else if (type == CV_32F)
72
+ else
88
73
{
89
- maxd = rng.uniform (32 .0f , FLT_MAX);
90
- mind = rng.uniform (-FLT_MAX, -32 .0f );
91
- }
92
- else if (type == CV_64F)
93
- {
94
- maxd = rng.uniform (32.0 , DBL_MAX);
95
- mind = rng.uniform (-DBL_MAX, -32.0 );
74
+ ASSERT_TRUE ( (depth == CV_32F)||(depth == CV_64F) ) << " Unsupported depth" ;
75
+ const double harf = 0.5 ;
76
+ const double bias = 0.125 ; // = 32/256 (Like CV_8U)
77
+ maxd = rng.uniform (harf + bias, 1.0 );
78
+ mind = rng.uniform (0.0 , harf - bias );
96
79
}
97
80
98
81
fgbg->setMinVal (mind);
99
82
fgbg->setMaxVal (maxd);
100
83
101
- Mat simImage = Mat::zeros (height, width, channelsAndType);
102
- int numLearningFrames = 120 ;
84
+ Mat simImage (height, width, mtype);
85
+ Mat fgmask;
86
+
87
+ const Mat fullbg (height, width, CV_8UC1, cv::Scalar (0 )); // all background.
88
+
89
+ const int numLearningFrames = 120 ;
103
90
for (int i = 0 ; i < numLearningFrames; ++i)
104
91
{
105
92
/* *
@@ -111,27 +98,21 @@ void CV_BackgroundSubtractorTest::run(int)
111
98
* Feed simulated images into background subtractor
112
99
*/
113
100
fgbg->apply (simImage,fgmask);
114
- Mat fullbg = Mat::zeros (simImage.rows , simImage.cols , CV_8U);
115
101
116
- // ! fgmask should be entirely background during training
117
- code = cvtest::cmpEps2 ( ts, fgmask, fullbg, 0 , false , " The training foreground mask" );
118
- if (code < 0 )
119
- ts->set_failed_test_info ( code );
102
+ EXPECT_EQ (cv::norm (fgmask, fullbg, NORM_INF), 0 ) << " foreground mask should be entirely background during training" ;
120
103
}
121
104
// ! generate last image, distinct from training images
122
105
rng.fill (simImage, RNG::UNIFORM, mind, maxd);
123
-
124
106
fgbg->apply (simImage,fgmask);
125
- // ! now fgmask should be entirely foreground
126
- Mat fullfg = 255 *Mat::ones (simImage.rows , simImage.cols , CV_8U);
127
- code = cvtest::cmpEps2 ( ts, fgmask, fullfg, 255 , false , " The final foreground mask" );
128
- if (code < 0 )
129
- {
130
- ts->set_failed_test_info ( code );
131
- }
132
107
108
+ const Mat fullfg (height, width, CV_8UC1, cv::Scalar (255 )); // all foreground.
109
+ EXPECT_EQ (cv::norm (fgmask, fullfg, NORM_INF), 0 ) << " foreground mask should be entirely foreground finally" ;
133
110
}
134
111
135
- TEST (VIDEO_BGSUBGMG, accuracy) { CV_BackgroundSubtractorTest test; test.safe_run (); }
112
+ INSTANTIATE_TEST_CASE_P (/* */ ,
113
+ bgsubgmg_allTypes,
114
+ testing::Combine (
115
+ testing::Values (CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F),
116
+ testing::Values(1 ,2 ,3 ,4 )));
136
117
137
118
}} // namespace
0 commit comments