|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "153c98aa-2f72-4cb4-a96a-c01374d84930", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "# Dask imports\n", |
| 11 | + "\n", |
| 12 | + "from dask_jobqueue import PBSCluster\n", |
| 13 | + "from dask.distributed import Client" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": null, |
| 19 | + "id": "338d23f5-92d2-422b-bbe4-01955aceff50", |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "# Dask cluster config\n", |
| 24 | + "\n", |
| 25 | + "cluster = PBSCluster(\n", |
| 26 | + " # Basic job directives\n", |
| 27 | + " job_name = 'hackathon-rechunk',\n", |
| 28 | + " queue = 'casper',\n", |
| 29 | + " walltime = '120:00',\n", |
| 30 | + " # Make sure you change the project code if running this notebook!!\n", |
| 31 | + " account = 'UCSG0002',\n", |
| 32 | + " log_directory = 'dask-logs',\n", |
| 33 | + " # These settings impact the resources assigned to the job\n", |
| 34 | + " cores = 1,\n", |
| 35 | + " memory = '10GiB',\n", |
| 36 | + " resource_spec = 'select=1:ncpus=1:mem=10GB',\n", |
| 37 | + " # These settings define the resources assigned to a worker\n", |
| 38 | + " processes = 1,\n", |
| 39 | + " # This controls where Dask will write data to disk if memory is exhausted\n", |
| 40 | + " local_directory = '/local_scratch/pbs.$PBS_JOBID/dask/spill',\n", |
| 41 | + " # This specifies which network interface the cluster will use\n", |
| 42 | + " interface = 'ext'\n", |
| 43 | + ")" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": null, |
| 49 | + "id": "0d4322e9-cc4f-4b45-815c-9b8228eb03a2", |
| 50 | + "metadata": {}, |
| 51 | + "outputs": [], |
| 52 | + "source": [ |
| 53 | + "# Create the client to load the Dashboard\n", |
| 54 | + "client = Client(cluster)\n", |
| 55 | + "\n", |
| 56 | + "# Display the client repr\n", |
| 57 | + "client" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "code", |
| 62 | + "execution_count": null, |
| 63 | + "id": "0c737b08-9cf2-4e90-9646-2013641815b7", |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [], |
| 66 | + "source": [ |
| 67 | + "# Scale and wait for workers\n", |
| 68 | + "\n", |
| 69 | + "cluster.scale(40)\n", |
| 70 | + "client.wait_for_workers(40)" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "id": "9d7d7583-c695-43c9-86a8-12f20b5d432d", |
| 77 | + "metadata": { |
| 78 | + "scrolled": true |
| 79 | + }, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "import xarray as xr\n", |
| 83 | + "import pandas as pd\n", |
| 84 | + "import dask\n", |
| 85 | + "\n", |
| 86 | + "# Read in files\n", |
| 87 | + "ds = xr.open_mfdataset('/glade/derecho/scratch/ksha/CREDIT_data/ERA5_mlevel_arXiv/SixHourly_y_TOTAL_202*.zarr',\n", |
| 88 | + " engine = 'zarr',\n", |
| 89 | + " consolidated=True,\n", |
| 90 | + " data_vars='minimal',\n", |
| 91 | + " coords='minimal',\n", |
| 92 | + " compat='override',\n", |
| 93 | + " parallel=True)\n", |
| 94 | + "\n", |
| 95 | + "# Rechunk the data\n", |
| 96 | + "ds = ds.chunk({\"time\": 1, \"level\": 1, \"latitude\": 640, \"longitude\": 1280})\n", |
| 97 | + "\n", |
| 98 | + "# Remove the old encoding info and set compression to none\n", |
| 99 | + "for k, v in ds.variables.items():\n", |
| 100 | + " v.encoding['compressors'] = None\n", |
| 101 | + " del v.encoding['chunks']\n", |
| 102 | + " del v.encoding['preferred_chunks']\n", |
| 103 | + "\n", |
| 104 | + "# Remove the old encoding info (default compression will then apply when written to Zarr)\n", |
| 105 | + "# for k, v in ds.variables.items():\n", |
| 106 | + "# del v.encoding['compressors']\n", |
| 107 | + "# del v.encoding['chunks']\n", |
| 108 | + "# del v.encoding['preferred_chunks']\n" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": null, |
| 114 | + "id": "53fd0270-d21e-4f2f-a769-1701900f66f4", |
| 115 | + "metadata": {}, |
| 116 | + "outputs": [], |
| 117 | + "source": [ |
| 118 | + "# Some not particularly polished data wrangling to combine the arrays\n", |
| 119 | + "# Skip this to write separate arrays\n", |
| 120 | + "\n", |
| 121 | + "full_variables = ['Q', 'T', 'U', 'V']\n", |
| 122 | + "single_level_variables = ['Q500', 'T500', 'U500', 'V500', 'Z500', 't2m', 'SP']\n", |
| 123 | + "\n", |
| 124 | + "ds1 = xr.concat([ds[x] for x in single_level_variables],\n", |
| 125 | + " pd.Index(single_level_variables,\n", |
| 126 | + " name='channel')).transpose('time',\n", |
| 127 | + " 'channel',\n", |
| 128 | + " 'latitude',\n", |
| 129 | + " 'longitude')\n", |
| 130 | + "\n", |
| 131 | + "c = xr.concat([ds[x] for x in full_variables], dim=full_variables)\n", |
| 132 | + "\n", |
| 133 | + "s = c.stack(channel = ('concat_dim','level')).transpose('time',\n", |
| 134 | + " 'channel',\n", |
| 135 | + " 'latitude',\n", |
| 136 | + " 'longitude').reset_index('channel')\n", |
| 137 | + "\n", |
| 138 | + "s['channel'] = s['concat_dim'] + s['level'].astype('str')\n", |
| 139 | + "\n", |
| 140 | + "ds2 = s.drop_vars(['level', 'concat_dim'])\n", |
| 141 | + "\n", |
| 142 | + "combined = xr.concat([ds1, ds2], dim='channel').rename('combined')\n", |
| 143 | + "\n", |
| 144 | + "combined.encoding" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "id": "a3b394cc-9186-4a83-8a5d-2fedc3f10825", |
| 151 | + "metadata": { |
| 152 | + "scrolled": true |
| 153 | + }, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "# Write to Zarr v3 with consolidated metdata\n", |
| 157 | + "\n", |
| 158 | + "combined.to_zarr('/glade/derecho/scratch/katelynw/era5/rechunked_stacked_uncompressed_test.zarr',\n", |
| 159 | + " zarr_version=3,\n", |
| 160 | + " consolidated=True)" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": null, |
| 166 | + "id": "cd075006-9d9c-43b4-82ce-9cb1a7d1c576", |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "# Shutdown the cluster\n", |
| 171 | + "\n", |
| 172 | + "client.shutdown()" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": null, |
| 178 | + "id": "9eedf120-3afa-4e26-a345-f58cbdc032a7", |
| 179 | + "metadata": {}, |
| 180 | + "outputs": [], |
| 181 | + "source": [ |
| 182 | + "# Open up the new dataset and check the encoding\n", |
| 183 | + "\n", |
| 184 | + "ds_new = xr.open_dataset('/glade/derecho/scratch/katelynw/era5/rechunked_stacked_uncompressed_test.zarr')\n", |
| 185 | + "\n", |
| 186 | + "ds_new.combined.encoding" |
| 187 | + ] |
| 188 | + } |
| 189 | + ], |
| 190 | + "metadata": { |
| 191 | + "kernelspec": { |
| 192 | + "display_name": "Python [conda env:my-env]", |
| 193 | + "language": "python", |
| 194 | + "name": "conda-env-my-env-py" |
| 195 | + }, |
| 196 | + "language_info": { |
| 197 | + "codemirror_mode": { |
| 198 | + "name": "ipython", |
| 199 | + "version": 3 |
| 200 | + }, |
| 201 | + "file_extension": ".py", |
| 202 | + "mimetype": "text/x-python", |
| 203 | + "name": "python", |
| 204 | + "nbconvert_exporter": "python", |
| 205 | + "pygments_lexer": "ipython3", |
| 206 | + "version": "3.12.9" |
| 207 | + } |
| 208 | + }, |
| 209 | + "nbformat": 4, |
| 210 | + "nbformat_minor": 5 |
| 211 | +} |
0 commit comments