|
| 1 | +import os |
| 2 | +import sys |
| 3 | +from contextlib import contextmanager |
| 4 | +from contextvars import ContextVar |
| 5 | +from dataclasses import dataclass |
| 6 | +from typing import Any, Callable, Dict, Literal, Optional, Tuple |
| 7 | + |
| 8 | +import replicate |
| 9 | + |
| 10 | +from .exceptions import ModelError |
| 11 | +from .model import Model |
| 12 | +from .prediction import Prediction |
| 13 | +from .run import _has_output_iterator_array_type |
| 14 | +from .version import Version |
| 15 | + |
| 16 | +__all__ = ["include"] |
| 17 | + |
| 18 | + |
| 19 | +_RUN_STATE: ContextVar[Literal["load", "setup", "run"] | None] = ContextVar( |
| 20 | + "run_state", |
| 21 | + default=None, |
| 22 | +) |
| 23 | +_RUN_TOKEN: ContextVar[str | None] = ContextVar("run_token", default=None) |
| 24 | + |
| 25 | + |
| 26 | +@contextmanager |
| 27 | +def run_state(state: Literal["load", "setup", "run"]) -> Any: |
| 28 | + """ |
| 29 | + Internal context manager for execution state. |
| 30 | + """ |
| 31 | + s = _RUN_STATE.set(state) |
| 32 | + try: |
| 33 | + yield |
| 34 | + finally: |
| 35 | + _RUN_STATE.reset(s) |
| 36 | + |
| 37 | + |
| 38 | +@contextmanager |
| 39 | +def run_token(token: str) -> Any: |
| 40 | + """ |
| 41 | + Sets the API token for the current context. |
| 42 | + """ |
| 43 | + t = _RUN_TOKEN.set(token) |
| 44 | + try: |
| 45 | + yield |
| 46 | + finally: |
| 47 | + _RUN_TOKEN.reset(t) |
| 48 | + |
| 49 | + |
| 50 | +def _find_api_token() -> str: |
| 51 | + token = os.environ.get("REPLICATE_API_TOKEN") |
| 52 | + if token: |
| 53 | + print("Using Replicate API token from environment", file=sys.stderr) |
| 54 | + return token |
| 55 | + |
| 56 | + token = _RUN_TOKEN.get() |
| 57 | + |
| 58 | + if not token: |
| 59 | + raise ValueError("No run token found") |
| 60 | + |
| 61 | + return token |
| 62 | + |
| 63 | + |
| 64 | +@dataclass |
| 65 | +class Run: |
| 66 | + """ |
| 67 | + Represents a running prediction with access to its version. |
| 68 | + """ |
| 69 | + |
| 70 | + prediction: Prediction |
| 71 | + version: Version |
| 72 | + |
| 73 | + def wait(self) -> Any: |
| 74 | + """ |
| 75 | + Wait for the prediction to complete and return its output. |
| 76 | + """ |
| 77 | + self.prediction.wait() |
| 78 | + |
| 79 | + if self.prediction.status == "failed": |
| 80 | + raise ModelError(self.prediction) |
| 81 | + |
| 82 | + if _has_output_iterator_array_type(self.version): |
| 83 | + return "".join(self.prediction.output) |
| 84 | + |
| 85 | + return self.prediction.output |
| 86 | + |
| 87 | + def logs(self) -> Optional[str]: |
| 88 | + """ |
| 89 | + Fetch and return the logs from the prediction. |
| 90 | + """ |
| 91 | + self.prediction.reload() |
| 92 | + |
| 93 | + return self.prediction.logs |
| 94 | + |
| 95 | + |
| 96 | +@dataclass |
| 97 | +class Function: |
| 98 | + """ |
| 99 | + A wrapper for a Replicate model that can be called as a function. |
| 100 | + """ |
| 101 | + |
| 102 | + function_ref: str |
| 103 | + |
| 104 | + def _client(self) -> replicate.Client: |
| 105 | + return replicate.Client(api_token=_find_api_token()) |
| 106 | + |
| 107 | + def _split_function_ref(self) -> Tuple[str, str, Optional[str]]: |
| 108 | + owner, name = self.function_ref.split("/") |
| 109 | + name, version = name.split(":") if ":" in name else (name, None) |
| 110 | + return owner, name, version |
| 111 | + |
| 112 | + def _model(self) -> Model: |
| 113 | + client = self._client() |
| 114 | + model_owner, model_name, _ = self._split_function_ref() |
| 115 | + return client.models.get(f"{model_owner}/{model_name}") |
| 116 | + |
| 117 | + def _version(self) -> Version: |
| 118 | + client = self._client() |
| 119 | + model_owner, model_name, model_version = self._split_function_ref() |
| 120 | + model = client.models.get(f"{model_owner}/{model_name}") |
| 121 | + version = ( |
| 122 | + model.versions.get(model_version) if model_version else model.latest_version |
| 123 | + ) |
| 124 | + return version |
| 125 | + |
| 126 | + def __call__(self, **inputs: Dict[str, Any]) -> Any: |
| 127 | + run = self.start(**inputs) |
| 128 | + return run.wait() |
| 129 | + |
| 130 | + def start(self, **inputs: Dict[str, Any]) -> Run: |
| 131 | + """ |
| 132 | + Start a prediction with the specified inputs. |
| 133 | + """ |
| 134 | + version = self._version() |
| 135 | + prediction = self._client().predictions.create(version=version, input=inputs) |
| 136 | + print(f"Running {self.function_ref}: https://replicate.com/p/{prediction.id}") |
| 137 | + |
| 138 | + return Run(prediction, version) |
| 139 | + |
| 140 | + @property |
| 141 | + def default_example(self) -> Optional[Prediction]: |
| 142 | + """ |
| 143 | + Get the default example for this model. |
| 144 | + """ |
| 145 | + return self._model().default_example |
| 146 | + |
| 147 | + @property |
| 148 | + def openapi_schema(self) -> dict[Any, Any]: |
| 149 | + """ |
| 150 | + Get the OpenAPI schema for this model version. |
| 151 | + """ |
| 152 | + return self._version().openapi_schema |
| 153 | + |
| 154 | + |
| 155 | +def include(function_ref: str) -> Callable[..., Any]: |
| 156 | + """ |
| 157 | + Include a Replicate model as a function. |
| 158 | +
|
| 159 | + This function can only be called at the top level. |
| 160 | + """ |
| 161 | + if _RUN_STATE.get() != "load": |
| 162 | + raise RuntimeError( |
| 163 | + "You may only call cog.ext.pipelines.include at the top level." |
| 164 | + ) |
| 165 | + |
| 166 | + return Function(function_ref) |
0 commit comments