-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsim.py
246 lines (208 loc) · 10 KB
/
sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import pygame
import numpy as np
from scipy.integrate import odeint
from constants import *
from vehicle_params import vehicle_parameters
from Road import Road
# Constants
WIDTH = 800
HEIGHT = 600
WHITE = (255, 255, 255)
RHO = 1.225 # air density in kg/m^3
G = 9.81
F_BRAKE_MAX = 1000 # Maximum brake force
FPS=30
dt = 0.05 # Time step for simulation
engine_torque = 320
slip_angle = 0.05
class CarState:
def __init__(self, position=0, velocity=0, lateral_position=0, lateral_velocity=0, orientation=0) -> None:
self.position = position
self.velocity = velocity
self.lateral_position = lateral_position
self.lateral_velocity = lateral_velocity
self.orientation = orientation #heading
# self.steering_angle= #front wheel
def as_list(self):
return [self.position,self.velocity,self.lateral_position,self.lateral_velocity, self.orientation]
class Car:
def __init__(self):
self.mass = vehicle_parameters["mass"]
self.drag_coefficient = vehicle_parameters["drag_coefficient"]
self.max_steering_angle = np.pi / 6
self.max_acceptable_acceleration = 50.0
self._throttle = 1
self._brake = 0
self._steering_angle = 0
@property
def throttle(self):
return self._throttle
@throttle.setter
def throttle(self, value):
self._throttle = max(0, min(1, value))
print("Debug_set_throttle: ",self._throttle)
@property
def brake(self):
return self._brake
@brake.setter
def brake(self, value):
self._brake = max(0, min(1, value))
print("Debug_set_brake: ",self._brake)
@property
def steering_angle(self):
return self._steering_angle
@steering_angle.setter
def steering_angle(self,value):
self._steering_angle = max(-self.max_steering_angle,min(value,self.max_steering_angle))
def traction_control(self, acceleration, engine_torque):
if acceleration > self.max_acceptable_acceleration:
return engine_torque * self.max_acceptable_acceleration / acceleration
return engine_torque
def longitudinal_dynamics(self, v, engine_torque):
F_drag = 0.5 * RHO * vehicle_parameters["frontal_area"] * self.drag_coefficient * v ** 2
F_rolling = self.mass * G * 0.015
F_net_without_engine_brake = -F_drag - F_rolling
a = F_net_without_engine_brake / self.mass
engine_max_torque = self.traction_control(a, engine_torque)
F_engine_max = engine_max_torque / vehicle_parameters["tire_radius"]
F_engine = self._throttle * F_engine_max
F_brake = self._brake * F_BRAKE_MAX
F_net = F_engine + F_net_without_engine_brake - F_brake
a = F_net / self.mass
print("Debug_long_dynamics brake,F_brake,throttle,F_engine,F_net:",self.brake,"\t",F_brake,"\t",self.throttle,"\t",F_engine,"\t",F_net)
return a
def lateral_dynamics(self, v_y, slip_angle):
F_cornering = -vehicle_parameters["tire_cornering_stiffness"] * slip_angle
a_y = F_cornering / self.mass
return a_y
def equations_of_motion(self, state, t, engine_torque, steering_angle, slip_angle):
position, velocity, lateral_position, lateral_velocity, orientation = state
slip_angle = np.arctan2(lateral_velocity, velocity)
adjust_slip_angle = slip_angle + steering_angle
acceleration = self.longitudinal_dynamics(velocity, engine_torque)
lateral_acceleration = self.lateral_dynamics(lateral_velocity, adjust_slip_angle)
dv_dt = acceleration
dv_y_dt = lateral_acceleration
dx_dt = velocity * np.cos(orientation)
dy_dt = velocity * np.sin(orientation)
dtheta_dt = velocity * np.sin(steering_angle) / vehicle_parameters["wheelbase"]
print("debug_equation_of_motion, dtheta_dt:",dtheta_dt)
return [dx_dt, dv_dt, dy_dt, dv_y_dt, dtheta_dt]
def get_next_state(self, state: CarState, Dt, engine_torque, slip_angle, steering_angle) -> CarState:
# Integrate equations of motion over dt to get the next state
t = [0, Dt]
current_state_list=state.as_list()
next_state_values = odeint(self.equations_of_motion, current_state_list, t, args=(engine_torque, steering_angle, slip_angle))[1]
return CarState(*next_state_values)
class Simulation:
def __init__(self):
pygame.init()
self.setup_display()
self.car_image = pygame.image.load("car.png")
self.car = Car()
self.exit = False
self.road = Road()
self.positions, self.lateral_positions, self.orientations, self.velocities = [],[],[],[]
self.current_state=CarState()
def setup_display(self):
self.screen = pygame.display.set_mode((WIDTH, HEIGHT), pygame.HWSURFACE | pygame.DOUBLEBUF | pygame.RESIZABLE)
pygame.display.set_caption("Car Animation")
self.clock = pygame.time.Clock()
def display_text(self, message, x, y, color=(0, 0, 0)):
font = pygame.font.SysFont(None, 25)
text = font.render(message, True, color)
self.screen.blit(text, (x, y))
def handle_events(self):
for event in pygame.event.get():
if event.type == pygame.QUIT:
self.exit = True
self._handle_continuous_keys()
def _handle_continuous_keys(self):
keys = pygame.key.get_pressed()
# Define a factor for steering angle change
steering_factor = 0.025 * self.car.max_steering_angle
if keys[pygame.K_UP]:
self.car.throttle = min(self.car.throttle + 0.1, 1) # limit throttle to 1
if self.car.brake > 0:
self.car.brake = max(self.car.brake - 0.1, 0)
if keys[pygame.K_DOWN]:
self.car.brake = min(self.car.brake + 0.1, 1) # limit brake to 1
if self.car.throttle > 0:
self.car.throttle = max(self.car.throttle - 0.1, 0)
if keys[pygame.K_LEFT]:
self.car.steering_angle -= steering_factor
if keys[pygame.K_RIGHT]:
self.car.steering_angle += steering_factor
if keys[pygame.K_SPACE]:
self.car.throttle = 0
self.car.brake = 0
self.car.steering_angle = 0 # Reset the steering when spacebar is pressed
# Print debug info
print("Debug_steering_angle: ", self.car.steering_angle)
print("Debug_max_steering_angle: ", self.car.max_steering_angle)
print("Debug_min_steering_angle: ", -self.car.max_steering_angle)
def update_dynamics(self, DT):
self.current_state = self.car.get_next_state(self.current_state, DT, engine_torque, slip_angle, self.car.steering_angle)
self.positions = np.append(self.positions, self.current_state.position)
self.velocities = np.append(self.velocities, self.current_state.velocity)
self.lateral_positions = np.append(self.lateral_positions, self.current_state.lateral_position)
self.orientations= np.append(self.orientations,self.current_state.orientation)
def rotated_car(self, orientation):
car_scaled = pygame.transform.scale(self.car_image, (44, 22))
rotated = pygame.transform.rotate(car_scaled, -np.degrees(orientation))
return rotated if rotated.get_width() != 0 and rotated.get_height() != 0 else car_scaled
def draw_car(self, x_pos, y_pos, rotated_img, orientation):
car_width, car_height = rotated_img.get_size()
# x_pos += np.cos(orientation) * 5
# y_pos -= np.sin(orientation) * 5
self.screen.blit(rotated_img, (WIDTH / 2 + x_pos - car_width / 2, HEIGHT / 2 + y_pos - car_height / 2))
def draw_road(self, i):
properties = self.road.get_road_properties(int(self.positions[i]))
self.screen.fill(colors["greenery"])
pygame.draw.rect(self.screen, colors[properties["road_type"]], (0, HEIGHT // 3, WIDTH, HEIGHT // 3))
def calculate_distance(self, x1, y1, x2, y2):
return np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
def calculate_acceleration(self, velocities, i):
if i == 0:
return 0
return (velocities[i] - velocities[i-1]) / 0.02 # dt = 1/50 = 0.02
def run(self):
positions_over_time = []
lateral_positions_over_time = []
velocities_over_time = []
accelerations_over_time=[]
positions_over_time.append(self.current_state.position)
lateral_positions_over_time.append(self.current_state.lateral_position)
velocities_over_time.append(self.current_state.velocity)
accelerations_over_time.append(0)
i = 0
pygame.key.set_repeat(100, 50) # Delay of 100ms before key repeats, then every 50ms
while not self.exit:
# dt = self.clock.tick(FPS) / 1000.0 # Get time taken for the frame in seconds
self.handle_events()
self.update_dynamics(dt)
# self.render(0)
self.screen.fill((0, 0, 0))
self.draw_road(i)
positions_over_time.append(self.current_state.position)
lateral_positions_over_time.append(self.current_state.lateral_position)
velocities_over_time.append(self.current_state.velocity)
acc = self.calculate_acceleration(velocities_over_time, i)
accelerations_over_time.append(acc)
pos_text = "Position_x: {:.2f}, Position_y: {:.2f}".format(self.current_state.position,self.current_state.lateral_position)
vel_text = "Velocity: {:.2f}".format(self.current_state.velocity)
acc_text ="Acceleration: {:.2f}".format(acc)
self.display_text(pos_text, 10, 30)
self.display_text(vel_text, 10, 50)
self.display_text(acc_text,10,70)
car_rotated_image = self.rotated_car(self.orientations[i])
self.draw_car(self.positions[i], self.lateral_positions[i], car_rotated_image, self.orientations[i])
pygame.display.flip()
i += 1
if i >= len(self.positions):
i = 0
self.clock.tick(FPS)
if __name__ == "__main__":
sim = Simulation()
sim.run()
pygame.quit()